< html> Домашний сайт - сопротивление воды движению судна

сопротивление воды движению судна

Основные положения

Парусное судно как объект, движущийся по поверхности воды, испытывает с ее стороны сопротивление своему движению двойной природы: оно затрачивает энергию на преодоление вязкости воды и на возбуждение колебаний ее поверхности – корабельных волн.

Первая из этих составляющих сопротивления существенна при небольших скоростях хода. С точки зрения гидродинамики обе среды, на границе которых движется судно, вода и воздух, являются жидкостями с малой вязкостью. Молекулы жидкости, непосредственно примыкающие к поверхности движущегося в ней тела, прилипают к ней; в результате вблизи нее формируется переходный пограничный слой, в котором возникает большой градиент скорости. Сопротивление жидкости движению тела определяется характером ее течения в пограничном слое; параметром этого течения является число Рейнольдса Re=VL/ν,
где
ν — кинематическая вязкость жидкости (для воды ν = 1,15•10-6 м2/c), для воздуха ν = 1,5•10-5 м2/c),
L – длина пограничного слоя, отсчитываемая от точки его образования, т.е. от переднего конца тела,
V – скорость движения тела.

Известно, что на плоской пластине при Re < 105 жидкость течет ламинарно в виде отдельных несмешивающихся слоев, параллельных плоскости пластины. При Re > 105 пограничный слой турбулизуется; в нем изменяются структура потока, профиль скоростей и т.п. Для турбулентного течения характерны вихреобразование, перемешивание жидкости, cложные, меняющиеся во времени и в пространстве пульсации скорости и давления. Величина Re, при которой происходит турбулизация пограничного слоя, называется критической; Re критическое достигается на некотором удалении от переднего конца обтекаемой жидкостью пластины; с ростом скорости течения точка турбулизации смещается к переднему краю. На шероховатых поверхностях турбулизация происходит раньше.

Возникновение турбулентности при обтекании тел, движущихся в жидкости, проявляется не только в виде турбулизации пограничного слоя, но и в появлении за телом турбулентного следа, возникающего при отрыве пограничного слоя от поверхности тела. Даже у хорошо обтекаемых корпусов на ходу наблюдается кильватерный след – турбулентная струя, в которой вода совершает вихревое движение. Место отрыва пограничного слоя зависит от кривизны и гладкости обтекаемого тела и характера течения. На выпуклой поверхности корпуса судна ламинарный пограничный слой неустойчив и отрывается вблизи миделя. Турбулентный пограничный слой устойчивее, поэтому турбулизация пограничного слоя сдвигает точку отрыва к корме корпуса. При этом турбулентная струя за корпусом сужается, а его сопротивление оказывается меньше; это явление называется кризисом обтекания.

При большой скорости судна, когда точка турбулизации пограничного слоя лежит впереди миделя, на поверхности корпуса имеются три различных области течения: носовая, где пограничный слой ламинарен, зона турбулентного пограничного слоя и, наконец, вблизи кормы, зона с отрывом пограничного слоя от корпуса. Избежать отрыва можно, если корма судна будет иметь очень плавный выход линии киля к поверхности воды.

Сопротивление трения зависит от того, ламинарен или турбулентен пограничный слой на корпусе судна. На рис.20 приведены данные Крамера, измерявшего коэффициент сопротивления продольно обтекаемого круглого цилиндра с упругой стенкой. В интервале чисел Re = 106—107 происходил переход от ламинарного пограничного слоя к турбулентному, причем оказалось, что на цилиндрах с упругой стенкой он заметно сдвинут к большим числам Re, так что они имеют меньшее сопротивление.

На этом же графике указано значение числа Re для "Бриза” при скорости хода 1 м/с. Видно, что тримаран попадает как раз в область минимума коэффициента сопротивления; на больших скоростях этот коэффициент возрастает в 3-4 раза. По-видимому, именно этим объясняются высокие ходовые качества тримарана на слабых ветрах; возможно, существенна и упругость стенки надувного баллона.

Придание упругости обтекаемой стенке является эффективным способом снижения сопротивления трения. Предполагается, что быстроходность дельфинов объясняется тем, что их кожа устроена так, что гасит турбулентность пограничного слоя даже при больших числах Re; на этом принципе было разработано специальное покрытие для судов "ламифло”, снижающее их сопротивление. На Олимпийских играх многие пловцы использовали специальные гидрокостюмы, позволявшие показывать более высокие результаты.

В свете сказанного ясно, что парусные суда с упругими надувными баллонами имеют кое-какие перспективы повышения ходкости. Возникает вопрос: как зависит ходкость судна от давления в баллонах; что лучше – накачивать их до звона или ходить на мягких баллонах. Воспроизвести шкуру дельфина во всех ее подробностях вряд ли удастся, но посмотреть влияние материала оболочки баллона на ходкость судна есть смысл.

Сопротивление трения корпуса судна существенно зависит и от его шероховатости. Днище яхт с жесткими корпусами всегда стремятся сделать как можно более гладким, для чего его шлифуют и полируют. Как влияет шероховатость на сопротивление упругого баллона, неизвестно, данных нет, но вряд ли она и здесь улучшает дело. Исходя из принципа, что кашу маслом не испортишь, лучше делать оболочки баллонов гладкими.







Get Adobe Flash player

Яндекс цитирования

Заказать хостинг!
Rambler's Top100